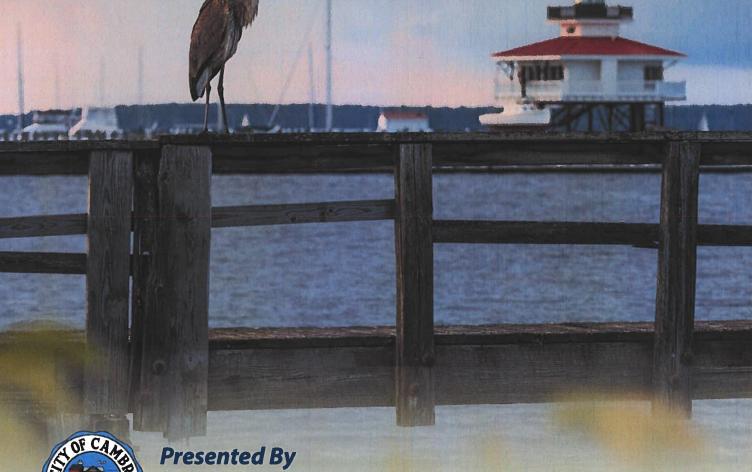
Dorchester County Sanitary District, Inc. Lodgecliffe Water Distribution System PWSID #: 0090009 Water Quality Data


The table below lists drinking water contaminants that we detected up to the end of the 2018 calendar year. These represent testing we were required to perform. These tests are in addition to the tests required and completed by our wholesale supplier, Municipal Utilities Commission. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The state requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old.

Terms & abbreviations used below:

- Maximum Contaminant Level Goal (MCLG): the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLG's allow for a margin of safety.
- Maximum Contaminant Level (MCL): the highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLG's as feasible using the best available treatment technology.
- Action Level (AL): the concentration of a contaminant in which, when exceeded, triggers treatment or other requirements which a water system must follow.
- n/a: not applicable nd: not detectable at testing limit ppb: parts per billion or micrograms per liter ppm: parts per million or milligrams per liter

Regulated Contaminants	MCG	MCLG	Lodgecliffe Water	Violation	Typical Source
TTHMs (Total Trihalomethanes)	80	N/A	18	No	Byproducts of chlorine disinfection
HAA (Haloacetic Acids)	60	N/A	7	No	Byproducts of chlorine disinfection

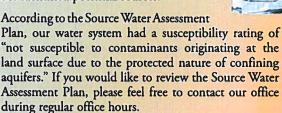
WATER TESTING PERFORMED IN 2018

OF CAMBRIDGE STRAND-1664

City of Cambridge Municipal
Utility Commission

COVER PHOTO BY JAMESON HARRINGTO

	a
w ·	


Our Mission Continues

We are once again pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2018. Over the years, we have dedicated ourselves to producing drinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best-quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all our water users.

Please remember that we are always available should you ever have any questions or concerns about your water.

Source Water Assessment

A Source Water Assessment Plan (SWAP) is now available at our office. This plan is an assessment of the delineated area around our listed sources through which contaminants, if present, could migrate and reach our source water. It also includes an inventory of potential sources of contamination within the delineated area, and a determination of the water supply's susceptibility to contamination by the identified potential sources.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as those with cancer undergoing chemotherapy, those who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and

Prevention) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include: Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife; Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems; Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Community Participation

You are invited to participate in our public forum and voice your concerns about your drinking water. We meet the fourth Thursday of each month, beginning at 5:30 p.m., at the Municipal Utilities Office, 410 Academy St., Cambridge, MD.

20 V V V V V V V V V V V V V V V V V V V				
			281	
	ā			
				E.
grand and the second se				

Where Does My Water Come From?

The City of Cambridge Municipal Utilities Commission customers are fortunate because we enjoy an abundant water supply from ten wells, withdrawing from three different aquifers. We have six wells pumping from the Piney Point aquifer, two wells in the Magothy aquifer, and two wells withdrawing from the Patapsco (Raritan) aquifer.

Piney Point Formation

The Piney Point aquifer is used by eight of the nine community water systems in the area. The thickness of the Piney Point Formation is variable, ranging from a few feet to about 160 feet. The formation consists of medium- to course-grained, olive green to black, slightly glauconitic sand with interbedded clayey layers. The top of the Piney Point Formation ranges about 340 feet below sea level at Cambridge. Transmissivity values in Cambridge range from 25,000 to 45,000 gallons per day (gpd) per foot. The Piney Point aquifer is overlain by the Chesapeake Group Formations that function as confining and leaky confining beds to this aquifer. The Piney Point aquifer does not outcrop at the ground surface, and therefore is not directly recharged by precipitation. Recharged is derived from lateral and vertical leakage through adjacent beds.

Magothy Formation

This formation consists of medium- to course-grained white yellow, and gray sands with irregular lenses of dark clay containing lignite. The thickness ranges from 30 to 139 feet. The top of the Magothy Formation is at about 900 feet below sea level in Cambridge. Transmissivity values at Cambridge are between 8,000 and 15,000 gpd per foot. The formation is overlain unconformably by the Matawan Formation that functions as a confining unit in Dorchester County.

Patapsco (Raritan) Formation

The Patapsco Formation consists of fine- to medium-grained greenish gray sand, with layers of mottled, tough clay. The sands occur in four beds ranging in thickness from 15 to 40 feet. The top of the Patapsco Formation ranges from about 1,000 to 1,500 feet below sea level in Dorchester County. Cambridge's wells have a transmissivity of over 16,000 gpd per foot. The Patapsco aquifer is overlain by multiple, younger aquifers and confining units of variable thickness. The outcrop area extends from Washington, DC, to Elkton, Maryland, in a band of varying width. Between Washington and Baltimore, the outcrop area is between 10 and 20 miles wide.

To meet our daily demand, we are currently operating three or four of the wells with others in reserve. The wells pump water into ground storage tanks located at our four pumping stations. The stations are located on Stone Boundary Road, Nathans Avenue, Glasgow Street, and Brohawn Avenue. Water is pumped from our pumping stations into the distributions system, which consists of approximately 90 miles of pipe supported by our elevated storage tanks with a capacity of 1.5 millions gallons. We provide our customers with roughly 1.5 million gallons of good, safe drinking water every day.

Lead in Home Plumbing

If present, elevated levels of lead can Lcause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing highquality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www. epa.gov/safewater/lead.

Water Treatment Process

Due to the high quality of well water that we utilize, the treatment process consists of just two steps. First, raw water is drawn from our wells and sent to an aeration tray, which allows for oxidation of the low iron

levels that are present in the water. The water then goes to a holding tank where chlorine is added for disinfection. (We carefully monitor the amount of chlorine, adding the lowest quantity necessary to protect the safety of your water without compromising taste.) Finally, the water is pumped from the pumpage facilities to sanitized water towers and into your home or business. Our certified water production operators monitor samples 365 days a year at different points in the system to ensure the quality of the water.

QUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please call Jane Dorman, Water Resource Administrator, Kevin Johnson, Sr., Superintendent, or Ed Bramble, Assistant Superintendent, at (410) 228-5440.

Test Results

ur water is monitored for many different kinds of substances on a very strict sampling schedule. Also, the water we deliver must meet specific I health standards. Here, we show only those substances that were detected in our water. (A complete list of all our analytical results is available upon request.) Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels. We are pleased to report that your drinking water meets or exceeds all federal and state requirements. The state recommends monitoring for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

tests on our drinking water. UCMR4 sampling benefits the environment and public health by providing the EPA with data on the occurrence of contaminants suspected to be in drinking water, in order to determine if the EPA needs to introduce new regulatory standards to improve drinking water quality. Unregulated contaminant monitoring data are available to the public, so please feel free to contact us if you are interested in obtaining that information. If you would like more information on the the EPA's Unregulated Contaminant Monitoring Rule, please call the We participated in the 4th stage of the U.S. EPA's Unregulated Contaminant Monitoring Rule (UCMR4) program by performing additional Safe Drinking Water Hotline at (800) 426-4791.

REGULATED SUBSTANCES	JBSTANCE								
SUBSTANCE (UNIT OF MEASURE)		YEAR	MCL D [MRDL]	L MCLG		AMOUNT	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Arsenic (ppb)		2018	10	0		2.5	0-2.5	ž	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Beta/Photon Emitters¹ (pCi/L)	itters!	2018	20	0 0		6.7	2-6.7	ž	Decay of natural and man-made deposits
Chlorine (ppm)		2018	4	[4]		9.0	0.5-0.6	ž	Water additive used to control microbes
Fluoride (ppm)		2018	4	4		-	0.4–1	%	Erosion of natural deposits; Water additive that promotes strong teeth; Discharge from fertilizer and aluminum factories
Haloacetic Acids [HAAs] (ppb)	[HAAs]	2018	9	NA	_	7	2.25-9.33	ž	By-product of drinking water disinfection
Nitrate (ppm)		2018	10	01 0		<0.5	<0.5~<0.5	ž	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
TTHMs [Total Trihalomethanes] (ppb)	(qdd)	2018	8	NA		18	3.35-27.04	ž	By-product of drinking water disinfection
Tap water samples were collected for lead	ere collected f		copper an	alyses from s	sample sit	es througho	and copper analyses from sample sites throughout the community	*	
SUBSTANCE (UNIT OF MEASURE)	YEAR	점	MCLG (9	AMOUNT DETECTED (90TH %ILE)	SITES AL/T SIT	SITES ABOVE AL/TOTAL SITES V	VIOLATION TY	TYPICAL SOURCE	
Copper (ppm)	2017	1.3	1.3	0.1	/0	0/31	No C	orrosion of ho	Corrosion of household plumbing systems; Erosion of natural deposits
Lead (ppb)	2017	15	0	4	/0	0/31	No Co	orrosion of ho	Corrosion of household plumbing systems; Erosion of natural deposits
			A COLUMN TO A COLU				and the same of th		

UNREGULATED SUBSTANCES	UBSTANCES				
SUBSTANCE (UNIT OF MEASURE)	YEAR	AMOUNT	RANGE LOW-HIGH	TYPICA	TYPICAL SOURCE
Sodium (ppm)	2017	57	57-57	Natur	Naturally occurring
UNREGULATED CONTAMINANT MONITORING RULE - PART 4 (UCMR4)	CONTAMINANT	MONITORI	NG RULE.	PART 4	(UCMR4)
SUBSTANCE (UNIT OF MEASURE)		YEAR		AMOUNT	RANGE LOW-HIGH
Bromide (ppb)		2018		31.6	11.2-52.4
BromoChloroAcetic Acid (ppb)	Acid (ppb)	2018		8.0	0.3-1.6
BromoDiChloroAcetic Acid (ppb)	tic Acid (ppb)	2018		0.47	ND-1.1
ChloroDiBromoAcetic Acid (ppb)	tic Acid (ppb)	2018		0.35	ND-0.7
DiBromoAcetic Acid (ppb)	(dqq) 1	2018		0.3	9.0-QN
DiChloroAcetic Acid (ppb)	(qdd) p	2018		1.4	0.7-2.2
HAAS (ppb)		2018		3.4	0.7-5.6
HAA6Br (ppb)		2018		2.8	0.8-3.7
HAA9 (ppb)		2018		5.9	1.5-8.9
Manganese (ppb)		2018	3	3.9	0.4-12.6
Total Organic Carbon [TOC] (ppb)	on [TOC] (ppb)	2018		9.0	ND-1.3
TriChloroAcetic Acid (ppb)	q (bbb)	2018		1.2	ND-3.0
7	Frankram A miner	401 011) - 03 and Figure	N. H. L.	the leavest at

The MCL for beta particles is 4 mrem/year. The U.S. EPA considers 50 pCi/L to be the level of concern for beta particles.

Definitions

percentile is equal to or greater than 90% of our lead and copper number of sites tested. The 90th 90th %ile: The levels reported the 90th percentile of the total for lead and copper represent detections.

treatment or other requirements that, if exceeded, triggers AL (Action Level): The

Level Goal): The level of a

rechnology.

that a water system must follow. monitoring location during the previous four calendar quarters. Annual Average): The average ot sample analytical results for LRAA (Locational Running samples taken at a particular Amount Detected values for as the highest LRAAs.

MCL (Maximum Contaminant Level): The highest level of a

MRDLG (Maximum Residual

Disinfectant Level Goal):

disinfectants to control microbial reflect the benefits of the use of disinfectant below which there ND (Not detected): Indicates The level of a drinking water NA: Not applicable MCLG (Maximum Contaminant below which there is no known or using the best available treatment expected risk to health. MCLGs drinking water. MCLs are set as close to the MCLGs as feasible contaminant in drinking water

that the substance was not found by laboratory analysis.

pCi/L (picocuries per liter): A

MRDL (Maximum Residual highest level of a disinfectant

allow for a margin of safety.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

that addition of a disinfectant is

contaminants.

There is convincing evidence

allowed in drinking water. Disinfectant Level): The

part substance per million parts water (or milligrams per liter). ppm (parts per million): One